If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15m^2-60=0
a = 15; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·15·(-60)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*15}=\frac{-60}{30} =-2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*15}=\frac{60}{30} =2 $
| -5,6e-2,3e=-24 | | 1/4x+5=-3 | | 5(x-5)+3x=23+2x | | 99-u=45 | | -2(8n-4)=-28+2n | | s+12=2 | | 32=4•f | | x/4-25=-18 | | -8(3+7a)=312 | | r-4+12=21 | | (2x+15)+x5=90 | | 9/(3x-5)=7 | | -4x=-1/2(10+18) | | -62+18x=7(11x+) | | 1+7x=810 | | 366=7(3+7p)+2 | | X+(.07x)=56.09 | | 4.3(w+2.5)=8.11+4w | | 5-4m=6+8-2m+7 | | 9m+10=72 | | 8-16x=72 | | 4x-35=-1 | | x-8=-3x-15 | | -2(-3+6)=-3+3+-3y | | (2-n)/(n+1)+(2n-4)/(2-n)=1 | | 4x+35=-1 | | -2n-15=n-3 | | (2-n))/(n+1)+(2n-4)/(2-n)=1 | | (6+5x4-8)÷2= | | 7x+21+94=180 | | 3(y-7)=-30 | | 11x-5=6-5 |